Weather Determined Geographic Characteristics of Wind and Solar Energy Generation Systems

Alexander E. MacDonald
Anneliese Alexander
Christopher Clack
Adam Dunbar
James Wilczak
Yuanfu Xie

NAWEA INAUGURAL MEETING
AUGUST 8, 2012

Study Basics

- Weather Assimilation Model to obtain PV Generation and Wind Generation:
 - RUC 13km 0-hour
 - Hourly
 - 2006, 2007, 2008 (each treated independently)

- Wind and Solar Features
 - Onshore turbines
 - 3 MW each (90 m)
 - Offshore turbines
 - 5 MW each (90 m)
 - PV Utility plants
 - 20 MW each
 - Natural Gas backup
 - Determined by System
 - Nuclear
 - 100.4 GW
 - Hydroelectric Dams
 - 74.4 GW
Rapid Update Cycle (RUC) Hourly Assimilation

Cycle hydrometeor, soil temp/moisture/snow plus atmosphere state variables

11
12
13 Time (UTC)

Hourly obs

<table>
<thead>
<tr>
<th>Data Type</th>
<th>~Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rawinsonde (12h)</td>
<td>150</td>
</tr>
<tr>
<td>NOAA profilers</td>
<td>35</td>
</tr>
<tr>
<td>VAD winds</td>
<td>120-140</td>
</tr>
<tr>
<td>PBL – prof/RASS</td>
<td>~25</td>
</tr>
<tr>
<td>Aircraft (V, temp)</td>
<td>3500-10000</td>
</tr>
<tr>
<td>TAMDAR (V, T, RH) (*)</td>
<td>200-3000</td>
</tr>
<tr>
<td>Surface/METAR</td>
<td>2000-2500</td>
</tr>
<tr>
<td>Buoy/ship</td>
<td>200-400</td>
</tr>
<tr>
<td>GOES cloud winds</td>
<td>4000-8000</td>
</tr>
<tr>
<td>GOES cloud-top pres</td>
<td>10 km res</td>
</tr>
<tr>
<td>GPS precip water</td>
<td>~300</td>
</tr>
<tr>
<td>Mesonet (temp, dpt)</td>
<td>~8000</td>
</tr>
<tr>
<td>Mesonet (wind)</td>
<td>~4000</td>
</tr>
<tr>
<td>METAR-cloud-vis-wx</td>
<td>~1800</td>
</tr>
<tr>
<td>AMSU-A/B/GOES radiances</td>
<td></td>
</tr>
<tr>
<td>– RR only</td>
<td></td>
</tr>
<tr>
<td>Radar reflectivity/ lightning</td>
<td>1km</td>
</tr>
</tbody>
</table>

Electrical Load

Electricity Demand in MW

Y-axis: 0, 1, 2, 3, 4, 5, 6, 7

X-axis: Hours

x100000
Electrical Load

- Electricity load from the three years (2006-2008) is grown using GDP until 2011 and then 0.7% per year to obtain 2030 levels.
- Load split into 16 sub-divisions based on largest cities in each balancing authority.

Price Parameter Space

- Costs parameter space:

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>LOW</th>
<th>MID</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONSHORE WIND</td>
<td>$1.35 / W</td>
<td>$1.61 / W</td>
<td>$1.87 / W</td>
</tr>
<tr>
<td>OFFSHORE WIND</td>
<td>$3.50 / W</td>
<td>$4.15 / W</td>
<td>$4.80 / W</td>
</tr>
<tr>
<td>PHOTOVOLTAICS</td>
<td>$1.23 / W</td>
<td>$2.13 / W</td>
<td>$3.02 / W</td>
</tr>
<tr>
<td>CORRESPONDING NATURAL GAS</td>
<td>$8.63 / mmBtu</td>
<td>$6.60 / mmBtu</td>
<td>$4.56 / mmBtu</td>
</tr>
</tbody>
</table>

- Costs are converted to mortgage costs @ 5% for 30 years. Natural gas capital is $1 / W.
- Transmission costs are $1300 / MW-mile.
Classification Maps

- The type and amount of electricity generation installed in each RUC box is constrained by:
 - Spacing between facilities
 - Topography of the land
 - Land Use (residential, commercial, protected lands, etc.)

Weather Data to Power

- The solar radiation is created by performing a multivariate regression of RUC model data and GOES satellite images.
- The solar realization number is calculated by modeling single axis tracking “standard” PV panels.

 - Regression is done on 13 independent variables: 5 satellites, top of atmosphere radiation, zenith angle and the 6 hydrometeors from the RUC assimilation model.
 - The regressed data is from the seven SURFRAD sites for 2006 – 8.
 - Correlation between the 48,000 data points is 0.9303.
Weather Data to Power

- The wind speed data is interpolated from the RUC assimilation model heights to hub height at 90 m.
- The wind speed is then applied to a generic “power” curve for a 3 MW wind turbine to produce the realization number.

<table>
<thead>
<tr>
<th>Wind Tower Location</th>
<th>50 m height</th>
<th>70 m height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower 1</td>
<td>-1.57 m/s</td>
<td>-1.30 m/s</td>
</tr>
<tr>
<td>Tower 2</td>
<td>-0.48 m/s</td>
<td>-0.35 m/s</td>
</tr>
<tr>
<td>Tower 3</td>
<td>-1.38 m/s</td>
<td>-1.19 m/s</td>
</tr>
<tr>
<td>Tower 4</td>
<td>-1.38 m/s</td>
<td>-1.12 m/s</td>
</tr>
<tr>
<td>Tower 5</td>
<td>-1.56 m/s</td>
<td>-0.37 m/s</td>
</tr>
</tbody>
</table>

- Bias calculations performed at 5 wind tower sites.
- The bias calculations suggest that the RUC has a low bias, and as such the RUC data will give a lower estimate of the wind power potential.

Wind Capacity: Fraction of Rated Power realized

Average Wind Capacity Factor - 2006-2008

[Map showing average wind capacity factor across the United States]
Minimization Procedure

- A cost optimization procedure creates a large-scale electricity generation system composed of wind, solar, natural gas backup, with Nuclear and Hydroelectric base load.

- Costs considered:
 - Installing a Wind Farm or Solar PV Utility
 - Natural gas plant installation
 - Natural gas fuel and variable O/M
 - Cost of transmission, both construction and electrical losses

- The cost is subject to:
 - It must meet the load at all times, in all areas
 - The placement of wind and solar must be less than upper bounds
 - Satisfy natural gas reserves requirement
 - Satisfy transmission between nodes
The Minimization Procedure

ALL OTHER EQUATIONS CONSTRAIN THE MAGNITUDE OF ANY OF THE TERMS

Linear Solution of Wind and Solar Installations (MW)
Full CONUS Solution

- Installed capacity:

<table>
<thead>
<tr>
<th>Technology</th>
<th>Capacity (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onshore Wind</td>
<td>975.63</td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>3.21</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td>199.53</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>503.22</td>
</tr>
</tbody>
</table>

TOTAL CAPACITY (INC NUKE & HYDRO): **1886.992 GW**
TODAY: 1137.3 GW [470.3 GW NATURAL GAS]

Full CONUS Solution

- Mean Capacity factors:
 - Onshore Wind: 33.47%
 - Offshore Wind: 51.33%
 - Photovoltaic: 17.29%
 - **Natural Gas**: 19.46%

- Transmission losses: 1.15%
- Electricity production curtailed: 9.81%
Full CONUS Solution

Generation vs Load

- Natural Gas
- Non-fossil fuel generation
- Load

Time (Hrs)

Generation / Load (GW)

Half CONUS Solution

Linear Solution of Wind and Solar Installations (MW)

Map of the United States with wind and solar installations indicated.
What the study demonstrates

- The utilization and cost effectiveness of combined wind and solar power generation is optimized for larger geographic (this scaling is more critical for low gas prices).
- The location of optimal wind and solar generating capacity far from demand would require a upgraded power transmission systems.
- Placement of wind in solar generation in an optimal national system is very different than the current ad hoc bottom-up approach.
- A national wind-solar generation system could supply a large percentage of US power (this is sensitive to costs).
- Such a system would result in large CO2 emission reductions.
What the study does not demonstrate

- Does not show exact locations of wind and solar placement. The resolution of the model is 13 km by 13 km.
- Grid integration is not included in the model.
- Local transmission and distribution is not in the model.
- The cost optimization, by definition, only outputs the most economical system. Other systems with higher and lower utilization can occur in reality.
- The transmission from the model is only a proxy.

QUESTIONS?