Design and Evaluation of a Wind Speed Estimator for Hub Height and Shear Components

North American Wind Energy Academy
2013 Symposium

Boulder, CO

Eric Simley

Advisor: Prof. Lucy Y. Pao

August 6, 2013
Outline

• Introduction to wind speed estimation
 – Why estimate wind speed?
 – Traditional estimation techniques

• Hub height and shear component wind field model

• Kalman filter wind speed estimator design

• Wind speed estimator performance
 – With and without measurement noise
Effective Wind Speed

Rotor Effective Wind Speed

- The equivalent uniform wind speed that would produce the same turbine response as the actual spatial distribution of wind speeds

\[P = \frac{1}{2} \rho \pi R^2 C_P (\lambda, \beta) u_{eff}^3 \]
Why Estimate Effective Wind Speed?

- Gain scheduling for control (Østergaard, 2007)
- Active power control for grid ancillary services (Aho, Buckspan, 2013)
Why Estimate Effective Wind Speed?

- Gain scheduling for control (Østergaard, 2007)
- Active power control for grid ancillary services (Aho, Buckspan, 2013)
- Control using estimated wind speed as a feedforward input (van der Hooft, 2004)
Why Estimate Effective Wind Speed?

- Gain scheduling for control (Østergaard, 2007)
- Active power control for grid ancillary services (Aho, Buckspan, 2013)
- Control using estimated wind speed as a feedforward input (van der Hooft, 2004)
- Optimal filtering of lidar measurements for feedforward control with preview (Schlipf, 2012; Simley, 2013)

Nacelle anemometer provides poor estimate of rotor effective wind speed

 - Point measurement
 - Flow affected by rotor

Image courtesy of U.S. Dept. of Energy
Methods for Estimating Effective Wind Speed

- **Power balance method:**
 \[\tau_g \omega_g = \frac{1}{2} \rho \pi R^2 C_P (\lambda, \beta) u_{eff}^3 \]

- **Torque balance method:**
 \[J \dot{\omega}_g = \frac{\tau_r}{N_g} - \tau_g \]
 \[\tau_r = \frac{\rho \pi R^2 C_P (\lambda, \beta) u_{eff}^3}{2\omega_r} \]

- **Kalman filtering (Ma, 1995; Bottasso 2010; Knudsen, 2011)**
 - Includes linearized turbine dynamics
 - Accounts for measurement noise
 - Uses wind speed statistics to improve performance

Fig. 1. Mechanical scheme of the wind turbine transmission system. Figure from Soltani, et al., “Estimation of Rotor Effective Wind Speed: A Comparison,” IEEE TCST, 2013.
The instantaneous wind field can be described as a combination of:

- Horizontal hub height wind speed \(u_{hh} \)
- Horizontal wind direction \(\delta \)
- Vertical wind speed \(w \)
- Linear horizontal wind shear \(\Delta_h \)
- Power law vertical wind shear \(\alpha \)
- Linear vertical wind shear \(\Delta_v \)

Three linear “blade effective wind speeds” can be equivalently described as hub height and shear terms

\[
u_i = f(u_{hh}, \Delta_h, \Delta_v, \psi_i)\]
Wind Field Disturbance Model

From “blade effective wind speeds” to hub height and linear shear components

$$
\begin{bmatrix}
 u_{hh} \\
 \Delta_h \\
 \Delta_v
\end{bmatrix} = T_{MBC}(\psi)
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3
\end{bmatrix}
$$
Kalman Filter Design

• Linear state-space turbine model:

 – State update: \[x(k+1) = Ax(k) + B \begin{bmatrix} \tau_g(k) \\ \beta(k) \end{bmatrix} + B_d \begin{bmatrix} u_{hh}(k) \\ \Delta_h(k) \\ \Delta_v(k) \end{bmatrix} \]

 – Output: \[y(k) = Cx(k) + D \begin{bmatrix} \tau_g(k) \\ \beta(k) \end{bmatrix} + D_d \begin{bmatrix} u_{hh}(k) \\ \Delta_h(k) \\ \Delta_v(k) \end{bmatrix} \]

• Examples of states:
 – Generator speed
 – Tower deflection
 – Blade deflection

Control input
Wind disturbance
Kalman Filter Design

- Linear state-space turbine model:

 - State update:
 \[
 \begin{bmatrix}
 x(k + 1) \\
 u_{hh}(k + 1) \\
 \Delta_h(k + 1) \\
 \Delta_v(k + 1)
 \end{bmatrix}
 =
 \begin{bmatrix}
 A & B_{d,u_{hh}} & B_{d,\Delta_h} & B_{d,\Delta_v} \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x(k) \\
 u_{hh}(k) \\
 \Delta_h(k) \\
 \Delta_v(k)
 \end{bmatrix}
 +
 \begin{bmatrix}
 B \\
 0 \\
 0 \\
 0
 \end{bmatrix}
 \begin{bmatrix}
 \tau_g(k) \\
 \beta(k)
 \end{bmatrix}
 \]

 - Output:
 \[
 y(k) =
 \begin{bmatrix}
 C & D_{d,u_{hh}} & D_{d,\Delta_h} & D_{d,\Delta_v}
 \end{bmatrix}
 \begin{bmatrix}
 x(k) \\
 u_{hh}(k) \\
 \Delta_h(k) \\
 \Delta_v(k)
 \end{bmatrix}
 +
 \begin{bmatrix}
 \tau_g(k) \\
 \beta(k)
 \end{bmatrix}
 \]

 - Wind disturbance states
 - Control input
Kalman Filter Design

- Linear state-space turbine model:

 - State update:

 $$
 \begin{bmatrix}
 x(k+1) \\
 u_{hh}(k+1) \\
 \Delta_h(k+1) \\
 \Delta_v(k+1)
 \end{bmatrix}
 =
 \begin{bmatrix}
 A & B_{d,u_{hh}} & B_{d,\Delta_h} & B_{d,\Delta_v} \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x(k) \\
 u_{hh}(k) \\
 \Delta_h(k) \\
 \Delta_v(k)
 \end{bmatrix}
 +
 \begin{bmatrix}
 B \\
 0 \\
 0 \\
 0
 \end{bmatrix}
 \begin{bmatrix}
 \tau_g(k) \\
 \beta(k)
 \end{bmatrix}
 +
 \begin{bmatrix}
 0 \\
 n_1(k) \\
 n_2(k) \\
 n_3(k)
 \end{bmatrix}
 $$

 - Output:

 $$
 y(k) =
 \begin{bmatrix}
 C & D_{d,u_{hh}} & D_{d,\Delta_h} & D_{d,\Delta_v}
 \end{bmatrix}
 \begin{bmatrix}
 x(k) \\
 u_{hh}(k) \\
 \Delta_h(k) \\
 \Delta_v(k)
 \end{bmatrix}
 +
 D
 \begin{bmatrix}
 \tau_g(k) \\
 \beta(k)
 \end{bmatrix}
 +
 \nu(k)
 $$

 - Wind disturbance states
 - Control input
 - Sensor noise
 - State update noise
Kalman Filter Design

• Linear state-space turbine model:
 • Degrees of freedom
 – Generator
 – First flapwise blade bending mode
 – First tower fore-aft mode
 • Sensors
 – Generator speed
 – Out-of-plane blade root bending moments
 – Nacelle IMU translational acceleration
 • Sensor noise
 – Generator speed, $\sigma = 2\%$ of operating point
 – Strain gages, $\sigma = 2\%$ of RMS value
 – Accelerometer, $\sigma = 4\%$ of RMS value

Simulation Environment

• NREL’s FAST aeroelastic simulator
• NREL 5MW Reference Turbine
 – Baseline collective pitch controller
• Above rated wind speed 13 m/s
• No mean wind shear
• Hub height and shear components modeled using three rotating blade effective wind speeds
 – Von Karman turbulence spectrum
 – 7.7% turbulence intensity

• Want to estimate wind speeds accurately up to ~1Hz (approximate bandwidth of pitch actuators)
Wind Speed Estimator Performance

Hub height component, above rated conditions, w/o tower mode

![Wind Speed vs Time](image)

- True Wind Speed
- Estimated Wind Speed

![Coherence vs Frequency](image)

- Frequency (Hz)

![PSD vs Frequency](image)

- Frequency (Hz)

![Phase vs Frequency](image)

- Frequency (Hz)
Wind Speed Estimator Performance

Hub height component, above rated conditions, w/ tower mode

- True Wind Speed
- Estimated Wind Speed

- Coherence

- Phase (deg)

- PSD (m²/s)
Wind Speed Estimator Performance

Hub height component, below rated conditions

![Graphs showing wind speed and estimates over time and frequency]

- True Wind Speed
- Estimated Wind Speed

![Graphs showing power spectral density (PSD) and phase over frequency]

- Coherence
- Phase (deg)

8/5/2013 E. Simley – NAWEA 2013, Wind Speed Estimation
Wind Speed Estimator Performance

Horizontal shear component, above rated conditions

Wind Speed Estimator Performance

Horizontal shear component, above rated conditions

- **Shear Component**
 - Time (s)
 - True Wind Speed
 - Estimated Wind Speed

- **Coherence**
 - Frequency (Hz)
 - 0.0
 - 0.1
 - 1.0

- **PSD (s)**
 - Frequency (Hz)
 - 10^{-1}
 - 10^{0}
 - 10^{-2}

- **Phase (deg)**
 - Frequency (Hz)
 - 10^{-1}
 - 10^{0}

8/5/2013

E. Simley – NAWEA 2013, Wind Speed Estimation
Wind Speed Estimator Performance

Hub height component, with measurement noise

\[y(k) = \begin{bmatrix} C & D_{d,u_{hh}} & D_{d,\Delta h} & D_{d,\Delta v} \end{bmatrix} \begin{bmatrix} x(k) \\ u_{hh}(k) \\ \Delta_h (k) \\ \Delta_v (k) \end{bmatrix} + D \begin{bmatrix} \tau_g(k) \\ \beta(k) \end{bmatrix} + \nu(k) \]

Sensor noise variance must be estimated.
Conclusions

• Wind speed estimation has many uses in wind turbine control
• A Kalman filter-based wind speed estimator can estimate hub height and shear components up to 1 Hz bandwidth
 – generator speed, blade root bending moment, and nacelle acceleration measurements
 – Difficult to model closed-loop modes
• Kalman filter accounts for measurement noise and state uncertainty
 – Requires knowledge of measurement noise and wind statistics
• Robust to measurement noise uncertainty up to 1 Hz bandwidth
Future Work

- Improve model of closed-loop system
- Implement a non-causal Kalman filter
 - Fixed estimation lag time
- Analyze performance during operating point transitions
 (time varying mean wind speed and mean shear)
Thank You

Questions?

eric.simley@colorado.edu