The Design Challenges of Large, Deep-Water, Vertical-Axis Wind Turbine Rotors

Josh Paquette

Sandia National Laboratories
Overview

- Sandia VAWT Experience
- VAWT Potential for Deep-Water Offshore Wind
- Sandia Offshore Technology Development Project
 - VAWT Airfoils
 - Aerodynamic Modeling
 - Aeroelastic Modeling
- Scaling to Large Machines
 - Design Options
 - Mass Properties of 5MW Darrieus Glass Rotors
 - Structural Dynamics Concerns
 - Parked Loads
Sandia VAWT Experience
Previous SNL VAWT Research

- Early 1970’s to mid 1990’s
- Started with Savonius rotors, Moved Quickly to Full-Darrieus Rotors
- Succession of Designs: Leading to the Very Successful 17-m, 100 kW Full-Darrieus VAWT
 - Successful Commercialization
 - Several US Manufactures
 - FloWind
 - Over 500 VAWTs Deployed: Primarily in Altamont Pass
 - 170 19-m Turbines in their Fleet
- Culminated with Design of the 34-m Research VAWT Test Bed
 - Commercialization
 - The Point Design
 - FloWind EHD Turbine
34-m VAWT Test Bed

- Located in Bushland, TX
 - Dedicated: May, 1988
 - Decommissioned: Spring, 1998
- Rotor: 34-m Dia, 50-m Height
- Performance:
 - Variable Speed: 25 to 38 rpm
 - Rated Power: 500 kW
- Heavily Instrumented
 - 72 Strain, 25 Environmental,
 - 22 Performance, 29 Electrical
- Large Database, Many Publications
Tower was the Largest Cost Element of the Rotor
Cantilever Designs

- **“H” Rotor**
 - No Reefing Capabilities
 - High Performance Penalty
 - Blade-to-Cross-Arm
 - Tip Losses
 - Aerodynamics Brakes in the Cross Arm

- **“Y”, “V” or Sunflower Rotor**
 - Blade Tip Stabilization: Aerodynamic Losses
 - Foldable Design
 - High Wind Survival
 - Hinged Blades: Maintenance Problem

- **Molded Composite Blades**
Long Blades
- Twice as Long as Equivalent HAWT Blade
- Innovative Materials & Manufacturing Techniques

Active Aerodynamic Control
- Passive Power Control: SNF Airfoils
- Aerodynamic Brakes

Large Footprint: Guy System
- Cantilever Designs

Torque Ripple
- Compliant Drive Train

Power Train
- May or May Not Self Start: Starting System Required
- Right-Angle Transmission
Considerations for Off-Shore Applications

- **Aerodynamics**
 - SNL NLF Airfoils, Summer Airfoils
 - Better Structural Characteristics: “Thick Airfoil” Series
 - Eliminate and/or Fair Struts and Joints

- **Blade Materials**
 - Composite Materials
 - Molded Composite Structure
 - High Bend-in-Place Stresses
 - Tailored Chord Distribution

- **Drive Train and Power Components**
 - Variable Speed with Regenerative Braking
 - Brake System
 - Direct-Drive
 - Vertically Mounted Generators
VAWT Potential for Deep-Water Offshore Wind
Offshore Wind Project Cost Breakdown

- Turbine: 28%
- Support Structure: 13%
- Logistics and Installation: 10%
- Electrical Infrastructure: 11%
- O&M: 21%
- Other Variable Costs: 11%
- Development & Permits: 5%
- Other Capital Costs: 1%

Musial & Ram 2010
Offshore Design Challenge: O&M Costs > 25% of the Total Project Cost

Drivetrain at tower top

Drivetrain at tower base

Horizontal Axis Wind Turbine (HAWT)

Outcome: Larger O&M cost

Vertical Axis Wind Turbine (VAWT)

Outcome: Smaller O&M cost

No yaw and blade pitch systems

Yaw and blade pitch systems add complexity
Offshore Design Challenge: Foundation Costs > 20% of Total Project Cost

Outcome:
Relatively expensive platform, mooring, and foundation

Higher CG

Horizontal Axis Wind Turbine (HAWT)

Outcome:
Relatively inexpensive platform, mooring, and foundation

Lower CG

Vertical Axis Wind Turbine (VAWT)

Outcome:
Relatively inexpensive platform, mooring, and foundation
Operating cyclical gravity loads and resulting fatigue impact increase with rotor size.

Outcome:
- Blade weight becomes increasingly difficult design challenge with larger rotors.
- Operating cyclical gravity loads and resulting fatigue impact are minimal.

Horizontal Axis Wind Turbine (HAWT)

Vertical Axis Wind Turbine (VAWT)

Offshore Design Challenge:

- Increased Supporting Infrastructure Cost
- Demand Larger Rotors

Outcome:
- Blade weight does not limit rotor size.
Wind direction can vary significantly across a large rotor, which attempts to align with the wind.

Outcome: Rotor performance decreases with size

VAWT rotor energy capture is insensitive to wind direction.

Outcome: Rotor performance insensitive to size

Offshore Design Challenge:

Increased Supporting Infrastructure Cost Demand Larger Rotors

Horizontal Axis Wind Turbine (HAWT)

Vertical Axis Wind Turbine (VAWT)
Sandia Offshore Technology Development Project
Demonstrate the feasibility of the Vertical-Axis Wind Turbine (VAWT) architecture for very large-scale deployment in the offshore environment.

The most critical barrier to offshore wind, high Cost of Energy (COE), is specifically targeted with the overall goal of achieving a 20% reduction in COE through application of VAWT rotor technology.
Key idea: Aerodynamic optimum for a VAWT airfoil is lift curve slope / drag, not lift / drag

- Consequence of the inherently unsteady nature of VAWT aerodynamics
- Leads to thicker optimal foils
- Thicker foils give stiffer blades

TU Delft has designed a new family of thick VAWT airfoils

SNL is assessing the performance under soiled conditions using CFD

Goal: incorporation into SNL VAWT rotor designs
VAWT Aerodynamic Modeling (TU Delft)

- **Goal:** Develop a highly accurate, but efficient, code for VAWT aerodynamics
- **Approach:** Hybrid Eulerian/Lagrangian Method
 - The flow in the near-blade region is calculated using conventional CFD
 - The flow in the wake is calculated using a vortex particle method
- **Accomplishments**
 - 2D version of the code is complete and is undergoing testing
- **Future Work**
 - Extension to 3D
 - Validation against VAWT experimental data
 - Efficiency improvements on GPU computers
Offshore Wind Energy Simulation Toolkit for Vertical-axis Wind Turbines (VAWTs)

- **Features:**
 - Considers VAWTs of arbitrary configuration
 - Enables modal and transient analysis capabilities
 - Resonance / stability
 - Turbulent winds, start up, shut down, etc.
 - Enables couplings/interfaces to:
 - Arbitrary aerodynamics modules
 - Arbitrary hydrodynamics/mooring modules
 - Floating platform motions
 - Generator and drivetrain dynamics
 - Turbine control algorithms
 - Accounts for passive aeroelastic couplings
 - Open-source, batch capability

- **Validation (SNL 34-meter VAWT)**
 - *Campbell diagram:*

- **Arbitrary VAWT Geometries:**

- **SNL 34-m parked mode shapes:**
 - 1st Antisymmetric Flatwise
 - 1st Symmetric Flatwise
 - 1st Propeller
 - 1st Blade Edgewise (Butterfly)
 - 2nd Antisymmetric Flatwise
 - 2nd Symmetric Flatwise
Scaling to Large Machines
Design Options

- 2-Bladed vs. 3-Bladed
 - Generally, 2 bladed should be lighter
 - 3 bladed rotor is balanced and reduces torque ripple

- Double Tapered vs. Single Tapered vs. Non-Tapered (constant chord)
 - Aerodynamically Optimal vs. Low CG vs. Ease of Manufacturing

- Straight vs. Tapered Tower

- Glass vs. Carbon
 - Cost vs. Weight

- Darrieus vs. V-Shaped
 - Structurally and Aerodynamically Efficient vs. Low Rotor Weight
5MW Scaling of Glass Darrieus: Effect of Design Options on Rotor Mass
5MW Scaling of Glass Darrieus: Effect of Design Options on Rotor CG
Double Tapered Blades

2-Bladed

3-Bladed

Frequency (Hz)

Rotor Speed (RPM)

Straight Tower

Tapered Tower
Single Tapered Blades

2-Bladed

3-Bladed

Straight Tower

Tapered Tower
Non-Tapered Blades

2-Bladed

3-Bladed

Straight Tower

Tapered Tower
Surface Strains for Parked, 3-Bladed, Glass, Single-Tapered 5MW Darrieus Rotor