Vortex wake models with application to yawed rotor

Emmanuel Branlard (PhD student, supervisor: Mac Gaunaa)

NAWEA, Boulder, August 2013

DTU Wind Energy Department of Wind Energy

Introduction – Vorticity

Iso-vorticity contours

5 August 2013

1. Presentation of the model

1. Presentation of the model

Decomposition of (skewed) helical wake

1. Presentation of the model

Viewed with infinite number of blades

2. Methodology for further investigations

Biot-savart law – Integration over z

$$I = C \int_0^{2\pi} \int_0^\infty \frac{a' + b'z}{(a + bz + cz^2)^{3/2}} dz d\theta = C \int_0^{2\pi} I_z d\theta$$
 (Pierce, 1899)

$$I_z = \frac{1}{\sqrt{c}} + \frac{2(2ab' - a'b)}{\sqrt{a}(4ac - b^2)} + \frac{4c(a' - a) + b(b - 2b')}{\sqrt{c}(4ac - b^2)}$$
(Suitable for analytical expressions - Work of Coleman)

$$I_z = \frac{2(a'\sqrt{c} + b'\sqrt{a})}{\sqrt{ac}(2\sqrt{ac} + b)}$$
 ("Suitable" for numerical integration - Work of Castles)

2. Methodology for further investigations

Longitudinal vorticity – semi-infinite lines

Biot-Savart law for semi-infinite line:

$$\mathbf{u}(\mathbf{x}) = \frac{\Gamma}{4\pi} \frac{\mathbf{e} \times r_1}{r_1 \left(r_1 - \mathbf{e} \cdot \mathbf{r}_1 \right)}$$

3. Tangential vorticity

3. Tangential vorticity

Axial component

$$u_{z,t}(r,\psi,\chi) = u_{z,0} \left(1 + K_{z,t}(r,\chi)\sin\psi\right)$$
$$K_{z,t,\text{approx}} \approx \left.\frac{\partial K_{z,t}}{\partial r}\right|_{r=0} = \frac{r}{R}\tan\frac{\chi}{2}$$

3. Tangential vorticity

In-plane component for various skew angles

$$u_{\psi,t,\mathrm{approx}} = -u_{z,0} \tan \frac{\chi}{2} \sin \psi$$

Root vortex

Tip-vortices

Tip-vortices – Axial component

 $u_{z,l}(r,\psi,\chi) = -\gamma_l K_{z,l}(r,\chi) \sin(2\psi)$

Tip-vortices – In-plane components

5. Putting pieces together

Relating vorticity intensity

5. Putting pieces together

DTU

Amplitude comparison – Small pitch

Axial velocity

Tangential velocity

 $u_z, I / u_z, 0 = 0.5\%$

 $u_{psi,l} / u_{z,0} = 4\%$

5. Putting pieces together

How good is this projection ?

Conclusions

- Full velocity field from longitudinal and tangential vorticity obtained with combined analytical and numerical integration
- Simple approximations or empirical formulae can be derived for implementation in BEM codes
- Influence of longitudinal tip-vorticity is small compared to other components

Future work

- Implementation in BEM
- Comparison with free-wake vortex code and experiments
- Relaxing infinite number of blade assumption (tip-losses)
- Relaxing the constant circulation hypothesis

Thank you for your attention

and the stander of