Wind Plant Modeling for Bulk System Planning

North American Wind Energy Academy 2013 Symposium

University of Colorado-Boulder August 6 – 8, 2013

Robert Zavadil Executive Vice President 620 Mabry Hood Road, Suite 300 Knoxville, Tennessee 37932 Tel: (865) 218-4600 ex. 6149 bobz@enernex.com www.enernex.com

Overview

- Why models?
- Wind generation modeling challenges
- Progress and status
- Is it real?

Role of Models in Bulk Power System Planning

- Proper computer and simulation models are indispensable for maintaining grid reliability
 - Identify impact of new generator, transmission equipment additions
 - Perform planning studies to ensure system reliability at the local and regional level
- Modeling focus for grid studies
 - Steady-state: power flow for voltage and reactive compensation assessment, contingency Operational evaluation Security
 - Dynamic: behavior of system and individual elements during and immediately after major system disruptions (e.g., short-circuits, loss of major generators, etc.)
- Model requirements addressed in existing (and future) NERC standards FnerNe

Resource Adequacy

> Bulk Electric System Reliability

Bulk Wind Generation is a "player"

- Wind generation is no longer "invisible"
 - Requirements for models have not been strictly enforced by transmission providers
 - Engineering judgment has played large role in previous studies
- Present approach is incompatible with the current system modeling practice
 - Many vendors have characterized their equipment in appropriate models
 - Issues
 - » Models can be confusing or cumbersome: features, versions, etc.
 - » Considered proprietary; made available after signing NDAs
- Cannot be maintained in base cases once plant is built
 - Base cases used for planning going forward
 - NDA riders not feasible under structures for model development, maintenance, and distribution

EnerNe🗙

NAWEA Symposium 2013

Energy Conversion Technology for Wind Generation

- Novel relative to conventional generation equipment
 - Conventional induction machines (Type I)
 - Induction machines w/ rotor resistance control (Type II)
 - Doubly-fed asynchronous machines (Type III)
 - Full power conversion static interface (Type IV)
- Wind plants have dozens hundreds of small generators; conventional plants have a few very large generators
- Conventional generation technology well known; modeling efforts ongoing for 75+ years!

Wind Plant Components

EnerNe🗙

NAWEA Symposium 2013

Interconnection Challenges

- Remote facilities
 - Typically interconnection to weak transmission network
 - Transmission capacity questions
- Reactive power dispatch
 - Dynamic character of wind generation
 - Coordination of reactive power control
- Interconnection requirements are evolving
 - Were typically very simple
 - Have evolved to voltage control, dynamic reactive power management
- Wind plants should behave like conventional plants, except for real power control

200

EnerNe🗙

Status

- Wind turbine and plant modeling remains at top of power industry needs list
- Landscape is much different than it was 5 years ago
 - Many parallel activities
 - Increased and widespread interest
 - The clock is now ticking (NERC)...
- Much progress made since over past five years
 - Individual efforts (turbine vendors, TSPs)
 - WECC initiative w/ voluntary contributions
 - IEC TC 88 WG 27
- Progress needs to be accelerated as firm deadlines are now probable

NERC IVGTF Phase II Task 1.1 - Scope

- From recommendations of Phase I report
- Focus on modeling for interconnection and other bulk system studies
- Phase II recommendations complete

Item #	Proposed				
	Improvement	Abstract	Lead	Deliverables	Milestones
<mark>1.1</mark>	Standard, valid,	Valid, generic, non-confidential, and public	<mark>Ad Hoc</mark>	Make recommendations	• Draft report ready by
	generic, non-	standard power flow and stability (positive-	group:	and identify changes	December 2009 PC meeting
	confidential, and public	sequence) models for variable generation	Members	needed to NERC's	• Final report sent with
	power flow and	technologies are needed. Such models should be	from IVGTF	MOD Standards	recommendations to PC for
	stability models	readily validated and publicly available to power	- Planning		endorsement in February
	(variable generation)	utilities and all other industry stakeholders.			<mark>2010</mark>
	are needed and must be	Model parameters should be provided by variable			• Develop SAR with Standards
	developed, enabling	generation manufacturers and a common model			Committee if required.
	planners to maintain	validation standard across all technologies should			
	bulk power system	be adopted. The NERC Planning Committee			
	<mark>reliability</mark>	should undertake a review of the appropriate			
		Modeling, Data and Analysis (MOD) Standards			
		to ensure high levels of variable generation can			
		be simulated. Feedback to the group working on			
		NERC Standards' Project 2007-09 will be			
		provided.			

EnerNe🗙

UWIG Generic Modeling Initiative

- Build on efforts initiated by WECC in 2005 to develop generic models for wind turbines and wind plants
- Utility Wind Integration Group / EnerNex project team
- DOE FOA 68
 - "20% Wind by 2030"
 - Topic 4A: Utility Wind Energy Integration
- Commitment of support from turbine vendors, National Laboratories, NERC, IEEE, RREs
- Work began 1Q '10
- Overall goal is to accelerate model development process for wind generation

EnerNe🗙

Applicability of Generic Models

- Conventional generation equipment represented from "library" of standard elements
- Similarly, generic wind turbine models are intended for transmission planning and interconnection studies
 - Application is simulation of system stability (voltage & angle) in positive-sequence environment, following faults and/or switching of transmission, generation, load, etc.
 - Focus on grid disturbances, not wind disturbances
 - Typical simulations are 10-30 sec duration
- Some simplification is required, consistent with power system modeling practice
 - Avoid confidentiality issues and avoid requibobrements for unreasonably short integration time steps
 - Models still need to be validated and useful

Generic Models – V1

Context

- Emphasis is on very specific models for bulk electric system impact studies, not "models" generally
- Behavior of turbines/plant under defined range conditions
 - Large-signal, short-duration variations of voltage and/or frequency
 - BES origin, not wind-driven
- Wind plants vs. conventional generators
 - Conventional generators -> synch. Machine + exciter + governor
 - Wind plants comprised of many (exotic) machines, and lots of other stuff
 - "Plant" vs. "Generator" validation

Approaches for Model Validation

- Various methods can and have been used
- All have advantages and disadvantages

PMU Data appears ideal for validation...

- First-principle quantities (i.e. voltage, grid injection current phasors) at resolution cycle-by-cycle resolution
 - Response of wind plant to large-signal disturbances on grid
 - » Voltage (short-circuits)
 - » Frequency excursions
 - PMU resolution is consistent with bandwidth of dynamic simulations in major bulk system analysis tools (PSS/E, PSLF)
- Monitoring at wind plant interconnection to BES would provide sufficient data for characterizing performance
 - Voltages <u>and</u> currents
 - Other important quantities can be derived

Dashed: Vendor-specific detailed model. Solid: WT1 model

...but

- A specific event may be hard to replicate via simulation
 - Plant model complexities
 - Initial conditions/system state
 - Origin and nature of system disturbance
- Actual events will be asymmetrical
 - PSS/E, PSLF models are positive sequence only
 - Unbalanced events model very approximately
 - 3-phase faults are extremely rare
- Events are infrequent
 - With just a few monitored locations, appropriate data for validate may be long in coming
 - Can be partially remedied by monitoring at many locations
- Large number of commercial turbines to validate

Summary

- PMUs will likely become a prime source of data for validation of all power system models
- Validation seems straightforward, but:
 - Over 500 individual plants in the current fleet validation for each one?
 - Regional Entity, transmission planning staff already busy
- And, what will NERC and/or the Regional Entities require for validation?

