

1. Introduction

Wind energy has evolved into a large international industry involving major players in the manufacturing, construction, and utility sectors. Significant technological innovation has resulted in larger turbines and wind plants with lower associated costs of energy. However, the increasing importance of wind energy's role within the electricity sector imposes more requirements on the technology in terms of performance, reliability, and cost.

Meeting these system-level goals is a multidisciplinary effort, requiring the coordination of diverse research groups and analytical capabilities. Over the last decade, a community of wind energy researchers and practitioners have developed software frameworks that leverages formal multidisciplinary design, analysis and optimization (MDAO, Figure 1) approaches to tackle this systemlevel questions.

2. IEA Wind Task 37: Wind Energy Systems Engineering

Objectives and Outcomes

- Improve quality of systems engineering by practitioners through development of best practices and benchmarking exercises
- Promote general knowledge and value demonstrations of systems engineering tools and methods applied to wind energy RD&D

Target Audience

• Wind turbine OEMs, developers, owner/ operators, consultancies, and research community

Figure 2: IEA Wind Task 37 Participants

Scope of this Project

- Provide coordination to enable collaborations, interactions, and comparisons (Figure 3)
- Develop an ontology to help standardize the representation of information that flows to and across MDAO workflows applied to wind turbine and plant design, operation and control

Ontology: A specification of a conceptualization, which provides an abstraction of all the knowledge, concepts, and objects, as well as the relationships between them, that exist within a domain

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

A Standard Aeroelastic Definition of Wind Turbine Rotors

E Gaertner¹, P Bortolotti¹, M McWilliam², F Zahle², K Dykes²

¹National Renewable Energy Laboratory, Boulder, Colorado, USA, ²Technical University of Denmark, Roskilde, Sjælland, Denmark

3. Development of a Rotor Ontology

A non-exhaustive survey of existing wind urbine rotor MDAO tools was conducted.

#	Name	Organization	Research/Commercial
1	BladeOASIS	CENER, ES	Research
2	Cp-Max	TU Munich, DE / Politecnico di Milano, IT	Research
3	FOCUS6	Knowledge Centre WMC, NL	Commercial
4	HAWTOPT2	DTU Wind Energy, DK	Research, partially open- source
5	LMS Samtech Samcef Wind Turbines	LMS Samtech (Siemens), DE	Commercial
6	OneWind Modelica Library	Fraunhofer IWES, DE	Research, partially open- source
7	QBlade	TU Berlin, DE	Research, fully open-source
8	Turbine.Architect	DNVGL, UK	Commercial
9	WISDEM	NREL, USA	Research, fully open-source

Every model is different (even for the exact same discipline and fidelity level) and every workflow is different, making it challenging to share data across tools (Figure 4). A wind turbine rotor discipline/fidelity matrix was created, spanning the methods used by all surveyed tools (Figure 5). Here, the green cells represent the most common combinations.

	Inflow aero	Airfoil aero	Rotor aero	Structures	Cross-sectional analysis	Controls	Aeroacoustics	Cost
Mode	Steady inflow	Look-up Table	Look-up Table CT&Power	Rigid	Analytical solid	Prescribed operation	Semi-empirical	Empirical parametric
	Unsteady uniform	Panel methods	BEM	Modal	Euler	Power/speed regulation	Frequency-based models	Empirical design- based
ling	Engineering unsteady 3D (Veers/Mann)	Inviscid Euler methods	Vortex methods	Multi-body (linear/non-linear)	Timoshenko	Load mitigation	Time- and frequency- based models	Full BOM and manufacturing process flow
Fidelity	DWM	RANS CFD	Actuator Disc CFD	Elemental non- linearity (GEBT)	Generalized 6x6	Safety protection functions		Full BOM and end- to-end virtual factory model
	Vortex methods	LES	Actuator Line CFD	Super-element		Supervisory controllers		
	Time resolved LES CFD		Blade resolved CFD	3D shell			Time resolved LES	
			Hi-fi time resolved turbulence modelled CFD	3D solid				

System Scope: Disciplines Included

Figure 5: Wind turbine rotor discipline/fidelity matrix A wind rotor turbine ontology was developed that allows the specification of arbitrary blade geometries, with a focus on Aero-Elastic modeling. Figure 6 shows the nested data structures for defining blade properties.

4. Rotor Ontology Features

The ontology has been coded into a **.yaml** file, which offers some nice

- 1. yaml is a human- and machine- readable data-serialization language
- 2. Supports commenting and descriptions
- 3. User-friendliness and flexibility to accommodate multiple disciplinaries and fidelity levels for each component
- 4. Supports JSON schema, which is a vocabulary that allows to annotate and validate JSON and YAML documents, providing clear human- and machine- readable documentation

Contributors and early adaptors include DTU, NREL, SNL, TU Delft, TU Munich, and Uni Stuttgart

NAWEA/WindTech 2019 Amherst, Massachusetts October 14-16, 2019