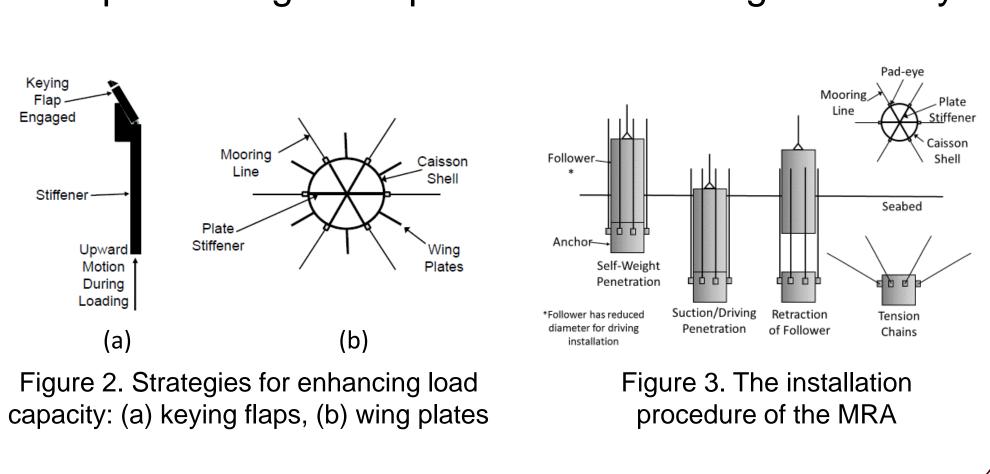

Zachry Department Of **Civil & Environmental Engineering**

Multiline Ring Anchor system for floating offshore wind turbines

Junho Lee¹, Charles P. Aubeny¹ ¹Zachry Department of Civil & Environmental Engineering, Texas A&M University

The Multiline Ring Anchor (MRA)

A. The concept of the MRA


> An embedded ring with up to 6 mooring lines > Optional wing plates or keying flaps (Fig. 2) \rightarrow enhancing horizontal & vertical load capacity

B. Potential advantages of the MRA

- Install in the wide range of soil
 - \rightarrow wide potential resources sites
- \succ Multiline potential \rightarrow reduced costs for
 - geotechnical investigation, transport,
 - material, fabrication, and installation
- Geotechnical efficiency: less than most
- plates, but still well above piles and caissons

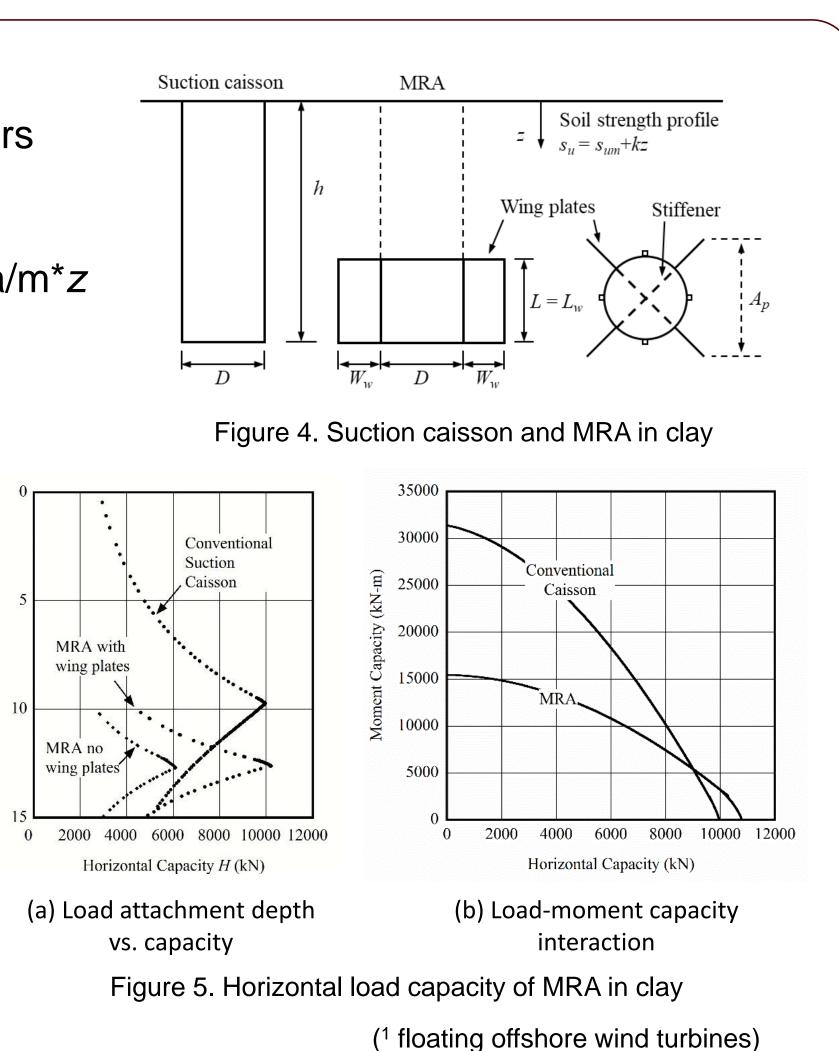
adequate depth (Fig. 3)

\succ Precise positioning & deep embedment \rightarrow high reliability

Example Comparative Study

Comparison to conventional suction caisson (SC) anchors can be instructive (Fig.4).

 \succ A typical soft clay (e.g Gulf of Mexico, [3]): $s_{ij}(z)=5+2kPa/m^{*}z$


A. Load capacity comparisons

- Consider SC and the MRA designed to provide load capacity equal to that of SC (Appendix) \succ Horizontal load capacity, H (Fig. 5) • H_{max} : Parity can achievable without increasing D.
- The MRA has less moment resistance than SC
 - due to shorter length (Moment, $M = H | L_i L_{iopt} |)^{**}$.
- \succ Vertical load capacity, V (Table 1)
 - V_{max} : The MRA diameter needed to be increased to 4m to achieve parity in V_{max} with the SC.

B. Comparative efficiency

> Geotechnical efficiency ($\eta_H = H_{max}/W$) • Horizontal loading: MRA $\eta_H = 29$, SC $\eta_H = 17.9$ • Vertical loading: MRA $\eta_V = 9.8$, SC $\eta_V = 9.2$ \rightarrow motivate to further research about keying flap Weight efficiency: ex) AHV transport operation

• 1 SC = 3 or 4 MRA \rightarrow fewer trips or smaller AHVs

Anchor	Features	Capacity	Weight	H_{max}	V_{max}
		enhancement	(kN)	(kN)	(kN)
Suction caisson	D = 3 m		557	9,960	5,130
	L = 15 m				
	t = 0.04 m				
MRA matching	D = 3.3 m	6 wing	350	10,800	
horizontal	L = 5.5 m	plates:			
capacity	$z_{tip} = 15 \text{ m}$	$W_w = 1.65 \text{ m}$			
	t = 0.04 m	$L_{w} = 5.5 \text{ m}$			
		$t_w = 0.04 \text{ m}$			
MRA matching	D = 4 m	6 wing plates	538		5,250
vertical capacity	L = 6.67 m	3 stiffeners:			
	$z_{tip} = 15 \text{ m}$	$L_{s} = 6.67 \text{ m}$			
	t = 0.04 m	$t_{\rm w} = 0.04 {\rm m}$			

TEXAS A&MA M

> The pile is penetrated to a certain embedment depth using driving or suction installation. Then the pile is extracted, leaving the ring anchor

^{**} L_i: load attachment depth, L_{iopt} : Optimum L_i

Concluding Comments

- \succ The MRA provide a means for significantly reducing the number of foundation footprints, with associated cost reductions.
- Installation cost for the MRA are medium (suction) to high (driving). However, the multiline potential may tend to offset its greater installation costs.
- Deep embedment & precise positioning can ensure robust performance under unintended loading and reliable prediction.
- Compared to SC, the MRA has a clear advantage under horizontal loading, future research is needed to improve the vertical load capacity by introducing keying flaps.

Appendix

The MRA load capacity parity can be achieved by increasing D or W_{W} of wings. \succ The design procedure is to (1) evaluate the MRA capacity using the same *D* as the suction caisson, (2) add wing plates to a maximum dimension $W_{W} = D/2$, and (3) if the previous step does not produce the target load capacity, incrementally increase D. \succ Estimated using a plastic limit analysis [4]

References

- [1] Diaz B D, Rasulo M, Aubeny C P, Fontana C M, Arwade S R, DeGroot D J and Landon M 2016 Multiline anchors for floating offshore wind towers. In: OCEANS 2016 MTS/IEEE *Monterey*, pp 1-9.
- [2] Fontana C M, Hallowell S T, Arwade S R, DeGroot D J, Landon M E, Aubeny C P, Diaz B, Myers A T and Ozmutlu S 2018 Multiline anchor force dynamics in floating offshore wind turbines *Wind Energy* **21** 1177-90
- [3] Quiros G, Young A, Pelletier J and Chan J 1983 Shear strength interpretation for Gulf of Mexico clays. In: Geotechnical practice in offshore engineering, (Austin, Texas: ASCE) pp 144-65
- [4] Aubeny C 2017 Geomechanics of Marine Anchors (Boca Raton: CRC Press, Taylor & Francis Group)