Clarkson NIVERSIT defy convention

Ducted Wind Turbines Optimization

Nojan Bagheri-Sadeghi, Brian Helenbrook, Kenneth Visser Department of Mechanical and Aeronautical Engineering Clarkson University, Potsdam, NY

Motivation

Ducted turbines can produce more power per

area than non-ducted designs

- Optimal design depends on performance metric
 - Power per rotor area, "4
 - Power per total cross sectional area, "4,67689
- Applications requiring high "4,67689:
 - Space-limited, Portable

Design Variables

Thrust coefficient of the rotor,

$$"_{\#} = \Delta \& / \frac{1}{2} * +$$

- Airfoil angle of attack, _
- Axial position of the rotor, //0
- Gap between the rotor and the duct, $\Delta 1/2$
- Chord length, 2/3

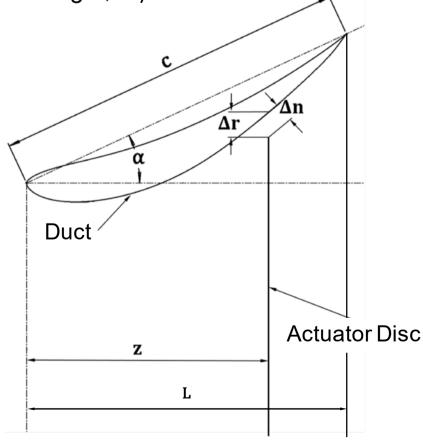
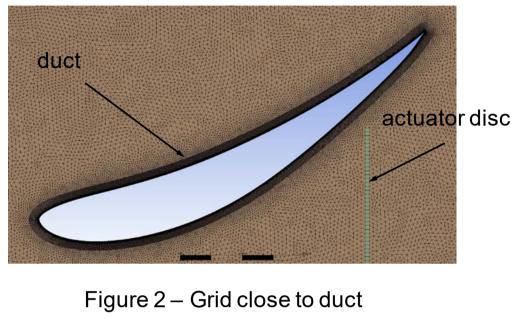



Figure 1 – Design Variables of a Ducted Wind Turbine

CFD Model

- Axisymmetric RANS model in ANSYS Fluent using
- : < SST turbulence model
- Wind turbine modeled as an actuator disc

Results

• Optimal design is usually on the verge of

separation

• Maximum " $_{4,67689}$ at c/D $\approx 20\%$

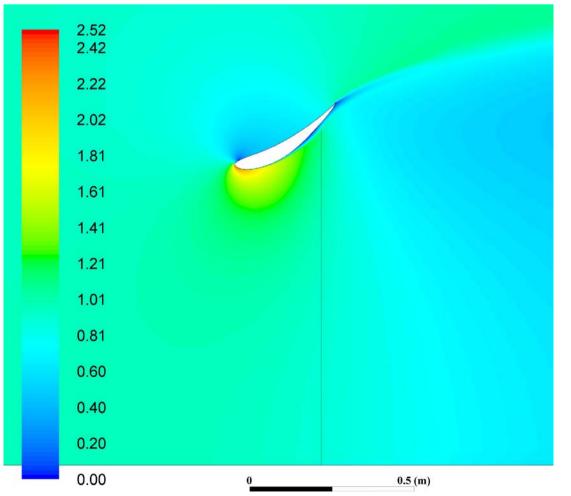


Figure 3 – Velocity magnitude contour of design for optimal "4,67689

Results (Cont.)

- Maximum "_{4,67689} 15% greater than Betz
- Optimal " $_{\#}$ close to open rotor (≈ 0.9)
- Higher optimal angle of attack for short ducts
- Optimal $\Delta 1/2$ nearly constant
- Rotor near back for short ducts

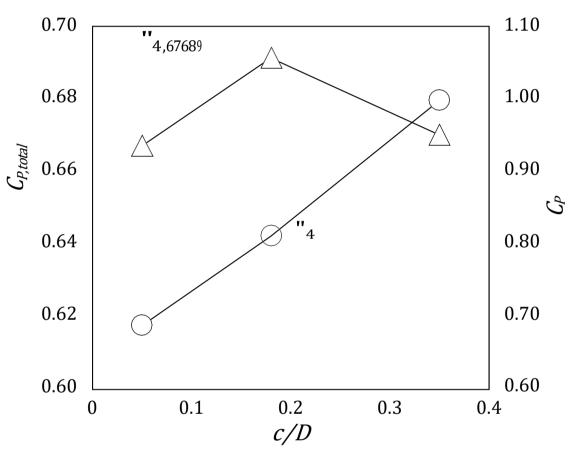


Figure 4 – Optimal $"_{4,67689}$ at fixed 2/3

Conclusions

- Optimal design of ducted turbines depends strongly on optimization objective
- " $_{4,67689}$ optimized design at optimal 2/3 $\approx 20\%$
- Maximum "4,67689 (0.69) greater than Betz limit for open rotor. Can get more power per area using a duct