Improving LiDAR performance on a complex terrain using CFD-based correction and direct-adjoint-loop optimization

S Nabi¹, P Grover¹, R Matai¹, Y Kajiyama³, N Kotake³, S Kameyama³, W Yoshiki³, N Nishio^{2,4} and M lida² ¹Mitsubishi Electric Research Laboratories, Cambridge, USA. ²University of Tokyo, Tokyo, Japan. ³Mitsubishi Electric Corporation, Ofuna, Japan, ⁴Electric Power Development Co., Ltd., Tokyo, Japan.

Introduction

- Wind-LiDAR is used for assessment of horizontal wind velocity. In order to do so, it is assumed that the flow remains homogeneous over the sampled volume at a given height (Fig. 1).
- LiDAR performance is excellent on flat terrains [1] but becomes poor on complex terrain.
- The objective is to improve the accuracy of horizontal wind measurement compared to anemometers
- The objective is to present a post-processing algorithm that uses CFD and adjoint optimization [2] tools to reduce such errors in flow retrieval.

Correction method

- The error is due to the variation of vertical velocity, w (Fig. 2).
- The components u, v, of un-biased velocity at each height z are [3] dw $u = u_L - z \frac{dx}{dx}$ $v = v_L - z \frac{1}{dv}$ u_L , v_L : homogenous
- The inhomogeneity of the vertical component of the wind speed can be simulated by the CFD software OpenFOAM.
- Challenge: there are various unknown parameters for CFD simulation, e.g. inlet velocity profile
- Optimize unknown parameters in CFD models based on LOS data measured by LiDAR (Fig. 3)
- From optimal CFD models we extract horizontal wind velocity
- The cost function is defined as

 $\min_{V_{in}} J = \gamma_i \left(LOS - LOS_{CFD} \right)^2$

weightings Inlet velocity

Result of optimization: i) un-biased velocity retrieval, ii) reconstructed velocity field over terrain

References

1. Kotake N, Kameyama S., Kajiyama Y, Enjo M, 2016: Performance analysis of Mitsubishi Electric's wind lidar in the measurement campaign at European test sites, WindEurope. 2. Nabi, S., Grover, P. and Caulfield, C.C.P., 2017: Adjoint-based optimization of displacement ventilation flow. Building and Environment, 124, pp.342-356. 3. Bingöl, F., Mann, J. and Foussekis, D., 2009. Conically scanning lidar error in complex terrain. Meteorologische Zeitschrift, 18(2), pp.189-195.

Results

parameter		
α	β	R^2
.044	-0.734	0.937
.976	-0.21	0.972