

Challenges of Large Scale **Deployment of Wind Power**

Session Introduction

J. F. Manwell

NAWEA Inaugural Meeting August 8, 2010

Is it possible to supply a large fraction of the continent's energy from wind?

• History shows that a large fraction of the world's mechanical and transportation energy once came from the wind, so it is clearly possible!

Naval battle of Trafalgar, 1805

Water pumper, US, c. 1870

The Industrial Revolution...

- Coal/oil convenient than wind \rightarrow
- Use of wind energy dropped precipitously with the rise of fossil fuels
 - But: fossil fuels are finite, difficult to extract, are often found in inhospitable places, and release CO_2 !

Strip mining for coal

Burning oil pipeline, Iraq

Age of Electrification

- Dominant energy for prime movers was coal, etc.
- Wind turbines emerged but % contribution small

Jacobs windcharger, 1930s

Smith-Putnam turbine, 1940s

Wind Energy Center An Early Vision of Large Scale Utilization of Wind Energy

• Offshore wind and the hydrogen economy

Wind Electricity Reborn

• Technical advances on many fronts facilitate new types of wind turbines

UMass WF-1, 1976

US Windpower, c. 1980 University of Massachusetts **22**

Wind Energy Today

- Turbines are commercial: much larger, more sophisticated, more reliable
- They generate significant amounts of electricity, but still small compared to continent's total energy
- Mostly operate as "fuel savers"
- How much more can wind do?

Hull (MA) Wind I, 2002

Wind Energy Center Wind/Diesel Systems: Precedent for High Penetration Wind Energy

- Diesel generators, wind turbines, load management, intelligent supervisory control, short term energy storage, thermal energy
- 50% of fuel savings is good target!

Selawik, AK wind/diesel system, 2009

- How high can we go? What would it take?
- Wide-spread deployment of turbines
- Wind turbines for wide range of applications
- Resolution of interconnection/load matching issues on large scale
- Integration with solar electric?
- Storage?
- Fuel production? (H₂, NH₃, hydrogenated biomass...) University of Massachusetts **22**

Wind Energy Center Questions Remain in Many Areas...

- Wind energy system science and engineering
- Grid integration and management
- Atmospheric sciences
- Environmental issues
- Market barriers
- Social acceptance
- Policy research
- Business and financial
- Interdisciplinary topics
- New topics: storage? fuels?

Wind Energy Center

Some Technology Options

Floating Offshore Wind

A wind/CAES model

Compressed Air Energy Storage

LIDAR integrated control

Can We Answer the Questions?

- Why not?
- It is the intent of NAWEA to make it happen!
- This session \rightarrow
 - Need for NAWEA
 - DOE's vision for R&D and education
 - Industry perspective
 - Offshore wind power challenges
 - Grid integration
 - Policy, integration and transmission

