

Study Basics

- Weather Assimilation Model to obtain PV Generation and Wind Generation:
 - RUC 13km 0-hour
 - Hourly
 - 2006,2007,2008 (each treated independently)
- Wind and Solar Features
 - Onshore turbines
 - Offshore turbines
 - PV Utility plants
 - Natural Gas backup
 - Nuclear
 - Hydroelectric Dams

- 3 MW each (90 m)
- 5 MW each (90 m)
- 20 MW each
- **Determined by System**

100.4 GW

74.4 GW

Rapid Update Cycle (RUC) Hourly Assimilation

Cycle hydrometeor, soil temp/moisture/snow plus atmosphere state variables

Hourly obs

- RR only

Data Type	~Number	
Rawinsonde (12h)	150	
NOAA profilers	35	
VAD winds 120	0-140	
PBL - prof/RASS	~25	
Aircraft (V,temp)	3500-10000	
*		
TAMDAR (V,T,RH)	200-3000	
Surface/METAR	2000-2500	
Buoy/ship 20	00-400	
GOES cloud winds	4000-8000	
GOES cloud-top pres	10 km res	
GPS precip water	~300	
Mesonet (temp, dpt)	~8000	
Mesonet (wind)	~4000	
METAR-cloud-vis-wx	~1800	
AMSU-A/B/GOES radiances		

Radar reflectivity/ lightning

Electrical Load

- Electricity load from the three years (2006-2008) is grown using GDP until 2011 and then 0.7% per year to obtain 2030 levels.
- Load split into 16 sub-divisions based on largest cities in each balancing authority

Price Parameter Space

Costs parameter space:

TECHNOLOGY	LOW	MID	HIGH
ONSHORE WIND	\$1.35 / W	\$1.61 / W	\$1.87 / W
OFFSHORE WIND	\$3.50 / W	\$4.15 / W	\$4.80 / W
PHOTOVOLTAICS	\$1.23 / W	\$2.13 / W	\$3.02 / W
CORRESPONDING NATURAL GAS	\$8.63 / mmBtu	\$6.60 / mmBtu	\$4.56 / mmBtu

- Costs are converted to mortgage costs @ 5% for 30 years. Natural gas capital is \$1 / W.
- Transmission costs are \$ 1300 / MW-mile.

Weather Data to Power

- The solar radiation is created by performing a multivariate regression of RUC model data and GOES satellite images.
- The solar realization number is calculated by modeling single axis tracking "standard" PV panels.

- Regression is done on 13 independent variables: 5 satellites, top of atmosphere radiation, zenith angle and the 6 hydrometeors from the RUC assimilation model.
- The regressed data is from the seven SURFRAD sites for 2006 8.
- Correlation between the 48,000 data points is 0.9303.

Weather Data to Power

- The wind speed data is interpolated from the RUC assimilation model heights to hub height at 90 m.
- The wind speed is then applied to a generic "power" curve for a 3 MW wind turbine to produce the realization number.

Wind Tower Location	50 m height	70 m height
Tower 1	-1.57 ms ⁻¹	-1.30 ms ⁻¹
Tower 2	-0.48 ms ⁻¹	-0.35 ms ⁻¹
Tower 3	-1.38 ms ⁻¹	-1.19 ms ⁻¹
Tower 4	-1.38 ms ⁻¹	-1.12 ms ⁻¹
Tower 5	-1.56 ms ⁻¹	-0.37 ms ⁻¹

- Bias calculations performed at 5 wind tower sites.
- The bias calculations suggest that the RUC has a low bias, and as such the RUC data will give a lower estimate of the wind power potential.

99

Minimization Procedure

- A cost optimization procedure creates a large-scale electricity generation system composed of wind, solar, natural gas backup, with Nuclear and Hydroelectric base load.
- · Costs considered:
 - Installing a Wind Farm or Solar PV Utility
 - Natural gas plant installation
 - Natural gas fuel and variable O/M
 - Cost of transmission, both construction and electrical losses
- The cost is subject to:
 - It must meet the load at all times, in all areas
 - The placement of wind and solar must be less than upper bounds
 - Satisfy natural gas reserves requirement
 - Satisfy transmission between nodes

Full CONUS Solution

Installed capacity:

Technology	Capacity (GW)
Onshore Wind	975.63
Offshore Wind	3.21
Photovoltaic	199.53
Natural Gas	503.22

TOTAL CAPACITY (INC NUKE & HYDRO): 1886.992 GW TODAY: 1137.3 GW [470.3 GW NATURAL GAS]

99

Full CONUS Solution

Mean Capacity factors:

- Onshore Wind: 33.47%

- Offshore Wind: 51.33%

- Photovoltaic: 17.29%

Natural Gas: 19.46%

Transmission losses: 1.15%

Electricity production curtailed: 9.81%

What the study demonstrates

- The utilization and cost effectiveness of combined wind and solar power generation is optimized for larger geographic (this scaling is more critical for low gas prices).
- The location of optimal wind and solar generating capacity far from demand would require a upgraded power transmission systems.
- Placement of wind in solar generation in an optimal national system is very different than the current ad hoc bottom-up approach.
- A national wind-solar generation system could supply a large percentage of US power (this is sensitive to costs).
- Such a system would result in large CO2 emission reductions.

What the study does not demonstrate

- Does not show exact locations of wind and solar placement. The resolution of the model is 13 km by 13 km.
- Grid integration is not included in the model.
- Local transmission and distribution is not in the model.
- The cost optimization, by definition, only outputs the most economical system. Other systems with higher and lower utilization can occur in reality.
- The transmission from the model is only a proxy.

