Wind Energy Education
University of Wyoming Experience

Jonathan W. Naughton
Professor, Mechanical Engineering
Director, Wind Energy Research Center
Workforce Needs at Many Levels

• Wind energy education – the need
 ▫ Many reports document the need for a trained workforce for the U.S. wind energy industry
 ▫ Hubs of activity will require workforce at all levels
 ▫ Educational programs provide the training environment to allow the individual to pursue the level of education desired
Wyoming Educational Programs

- **Wind Energy Technology**
 - Laramie County Community College (LCCC), Cheyenne, WY
 - Focus is on developing technical professionals by meeting industry standards

- **B.S. in Engineering or Science**
 - Energy Systems Engineering
 - Degree focused on energy conversion
 - Energy electives taken during years 3&4
 - Wind and tidal energy
 - **30 students in course each yr**
 - Solar and geothermal energy

- **Graduate Degrees in Wind Energy**
 - M.S. and Ph.D. in traditional disciplines
 - Research focus has application to wind energy
 - About 20 students have participated to date with > 10 graduates
University of Wyoming
DOE Grant for M.S. in Wind Energy

• DOE Workforce Grant to explore feasibility
• 6 students selected in 2 groups
• Undergraduate degrees
 ▫ 3 Mechanical Engineers
 ▫ 1 Electrical Engineers
 ▫ 1 Physicist
 ▫ 1 Earth System Science and Engineering
• Graduate degrees
 ▫ 5 Mechanical Engineering
 ▫ 1 Electrical Engineering
 ▫ 5 of these chose to write a thesis – surprise!

• 3 students are currently employed
 ▫ High Performance Computing
 ▫ Wind Resource Specialist
 ▫ Ph.D. in Wind Energy Science
• 3 students will complete degree Summer/Fall 2013

• Program considered a success
 ▫ Interdisciplinary degree trains students for working in a wide range of fields including wind
 ▫ Wind energy provides a context for complex systems

August 7-9, 2013
NAWEA Symposium 2013
Naughton
Proposed Interdisciplinary M.S. in Wind Energy

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course 1</td>
<td>Core Course 4</td>
</tr>
<tr>
<td>Core Course 2</td>
<td>Wind Integration Course 1</td>
</tr>
<tr>
<td>Core Course 3</td>
<td>Wind Integration Course 2</td>
</tr>
<tr>
<td>Elective</td>
<td>Wind Integration Course 3</td>
</tr>
<tr>
<td>Elective</td>
<td>Wind Integration Course 4</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3–Option 1</th>
<th>Semester 3 – Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>Internship</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3–Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis Research</td>
</tr>
<tr>
<td>Seminar</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Proposed Interdisciplinary M.S. in Wind Energy

- **Core Courses (12 credits)**
 - Chosen from a list of courses available at home institution
 - Fluid Mechanics
 - Boundary Layer Meteorology
 - Control Theory
 - Power Systems
 - Structural Analysis
 - Chosen from 2 or more traditional areas
 - Provide a strong technical foundation

- **Electives (6 credits)**
 - Provides additional study in one or more technical areas available at home institution

- **Integration Courses (6 credits)**
 - Chosen from 6 mini-courses on wind turbine applications
 - Wind Resource Modeling,
 - Wind Turbine Aerodynamics and Aeroelastics
 - Wind Turbine Dynamics and Control
 - Wind Turbine Foundations and Towers
 - Taught by academic, gov’t & industry experts

- **Options**
 - Provides flexibility
 - 2 Additional courses
 - Approved internship
 - Research project + thesis